Korean flowering cherry (Prunus × yedoensis Matsum.) response to elevated ozone: physiological traits and biogenic volatile organic compounds emission

Author:

Lim Yea Ji,Kwak Myeong JaORCID,Lee JongkyuORCID,Kang Dawon,Je Sun Mi,Woo Su YoungORCID

Abstract

AbstractOzone (O3) absorption through leaf stomata disrupts plant physiological processes, prompting various defense mechanisms to mitigate O3-induced harm. This study measured parameters including cell structure, gas exchange, carbon assimilation, lipid peroxidation, and biogenic volatile organic compounds (BVOCs) emissions to evaluate the physiological impact of Prunus × yedoensis under elevated ozone (E-O3) exposure. The seedlings exhibited a slight stimulatory effect during the early phases of E–O3 exposure; however, E–O3 beyond a specific threshold significantly and negatively affected photosynthetic parameters, pigment content, and potential antioxidant capacity, and E–O3 was significantly correlated with the BVOCs emission rate. After three weeks of E–O3 exposure, no significant differences were observed in leaf stomatal appearance in the field emission scanning electron microscopy results, but according to the results of leaf mesophyll cell ultrastructure, grana degradation, membrane decomposition, cell wall thickening, wart–like protrusion formation, and increased plastoglobulus density within the chloroplasts were observed. Chlorophyll content significantly decreased by 38.71%, and solute leakage increased by 20.57% in the E–O3 group. The net photosynthetic rate was almost two times lower with E–O3. In contrast, there were no significant differences in stomatal conductance. In conclusion, E–O3 can induce a hormetic stimulatory effect during the early exposure phase. However, when the critical threshold is exceeded, O3 adversely affects the physiology of P. × yedoensis seedlings. Therefore, E–O3 is a harmful air pollutant that hinders the growth of woody plants, and urban trees require the continuous management of O3 phytotoxicity.

Funder

Ministry of Education

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3