Breeding for intercropping: the case of red clover persistence in grasslands

Author:

Ergon ÅshildORCID,Bakken Anne Kjersti

Abstract

AbstractLegumes are important in sustainable agriculture and particularly so when they are intercropped with other species. In breeding programs, little attention is paid to their agronomic performance in species mixtures. In red clover, improved persistence is an important breeding goal. We identified traits associated with survival of red clover cultivated in pure stands (PS 3) or in mixtures with grasses (MS 3) and managed under a 3-cut system (two locations), as well as in pure stands in a 5-cut system (PS 5, one location). Survivors from replicate plots were collected and a new generation made from each plot. The new generations were characterized in a growth experiment with light or simulated shade, and in a freezing experiment. We show that the traits related to red clover persistence depend on both plant community composition and cutting frequency. MS 3 had more leaves with larger leaf blades and longer petioles during the vegetative stage, followed by earlier stem elongation, higher number of elongating stems, higher biomass (also when accounting for earlier stem elongation) and more leaves in the regrowth after cutting than PS 3. MS 3 also had better freezing tolerance. PS 5 was similar to MS 3 and different from PS 3 in the number of leaves, leaf blade size, petiole length and number of elongating stems. These results show that breeding and cultivar evaluation, which is currently almost exclusively considering performance in pure stands, may miss some variation which provides persistence of red clover in mixtures with grasses.

Funder

Norges Forskningsråd

Norwegian University of Life Sciences

Publisher

Springer Science and Business Media LLC

Subject

Horticulture,Plant Science,Genetics,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3