Breeding for resistance to bacterial wilt in Solanaceae crops: lessons learned and ways forward for Gboma eggplant (Solanum macrocarpon L.), a traditional African vegetable

Author:

Sossou Belchrist E.,Ayenan Mathieu A. T.,Schafleitner Roland,Rachidatou Sikirou,Achigan-Dako Enoch G.

Abstract

AbstractBacterial wilt (BW) is caused by Ralstonia solanacearum species complex (RSSC) and can lead to severe losses in a wide range of crops, including many traditional African vegetables (TAV). Given the critical role of TAV in African food security, investigations of BW incidence, distribution, and effective breeding strategies are needed to support public and private TAV breeding programs. In this review, we address key questions related to the diversity of BW pathogens, susceptible TAV hosts, distribution, incidence, breeding strategies, sources of resistance, and gaps in the development of resistant TAV varieties in Africa. We also discuss the potential of multiomics integration to enhance our understanding of the host plant defense system against BW in Solanaceae crops. We curated BW strain databases obtained from several online platforms, representing a total of 948 BW strains. Using a refined database, we highlighted the diversity of RSSC and TAV crops affected by RSSC in different regions of Africa. Out of 29 species documented to be affected by BW in Africa, ten are TAV, including widely consumed TAV such as Amaranths and nightshades. In addition, phylotypes I and III are reported to affect TAV, and the incidence can reach up to 72.4% in farmers’ fields. An overview of the first reports revealed that the disease has become a serious threat to TAV in the past decade. Finally, this review proposes a schematic map of possible avenues for successful breeding of BW-resistant TAV using Gboma eggplant as a case study.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3