Load-dependent power transfer efficiency for on-chip coils

Author:

Nilsson JoakimORCID,Borg Johan,Johansson Jonny

Abstract

AbstractThis paper presents a theory for the power transfer efficiency of printed circuit board coils to integrated circuit coils, with focus on load-dependence for low-power single-chip systems. The theory is verified with electromagnetic simulations modelled on a 350 nm CMOS process which in turn are verified by measurements on manufactured integrated circuits. The power transfer efficiency is evaluated by on-chip rectification of a 151 MHz signal transmitted by a spiral coil on a printed circuit board at 10 mm of separation to an on-chip coil. Such an approach avoids the influence of off-chip parasitic elements such as bond wires, which would reduce the accuracy of the evaluation. It is found that there is a lower limit for the load below which reducing the power consumption of on-chip circuits yield no increase in voltage generated at the load. For the examined process technology, this limit appears to lie around 56 k$$\Omega$$ Ω . The paper is focused on the analysis and verification of the theory behind this limit. We relate the results presented in this work to the application of wireless single-chip temperature monitoring of power semiconductors and conclude that such a system would be compatible with this limit.

Funder

Svenska Kraftnät

Lulea University of Technology

Publisher

Springer Science and Business Media LLC

Subject

Surfaces, Coatings and Films,Hardware and Architecture,Signal Processing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3