A tail-tolerant cloud storage scheduling based on precise periodicity detection

Author:

Han Yuxiao,Ma Jia,Li Fei,Liu Yubo,Xiao Nong,Lu Yutong,Chen Zhiguang

Abstract

AbstractCloud storage is a fundamental component of the cloud computing system, which significantly affects the overall performance and quality of service of the cloud. Cloud storage servers face the challenge of imbalanced workloads. According to our observations on the time series generated by cloud storage, we found that the imbalance workloads will dramatically increase the tail latency of data access in the multi-tenant scenario. The intuitive solution is to periodicity detect the imbalance storage nodes and re-balance the loads. However, there are four challenges to accurately detect load of storage in the cloud with multiple tenants since the load may change frequently in cloud. This paper proposes PrecisePeriod, a precise periodicity detection algorithm customized for multi-tenant cloud storage. It removes outliers through data preprocessing, employs the discrete wavelet transform to remove high-frequency noise while keeping frequency domain information, computes the candidate periodicity queue using the autocorrelation function, and determines precise period through periodicity verification. Then, we design a cloud storage load balancing scheduling strategy based on PrecisePeriod, and the evaluation shows that the PrecisePeriod scheduling significantly reduces tail latency while only bringing $$1-2\%$$ 1 - 2 % overhead.

Funder

The National Key Research and Development Program of China

NSFC

the Major Program of Guangdong Basic and Applied Research

the Program for Guangdong Introducing Innovative and Entrepreneurial Teams under Grant

Guangdong Natural Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Community and Home Care

Reference37 articles.

1. Almasri, A.: A new approach for testing periodicity. Commun. Statist. 40(7), 1196–1217 (2011) https://doi.org/10.1080/03610920903564743

2. Berthold, MR., Höppner, F.: On clustering time series using euclidean distance and pearson correlation. In: arXiv preprint arXiv:1601.02213 (2016)

3. Box, G.E.P.: Time series analysis: forecasting and control, John Wiley & Sons, Hoboken (2015)

4. Brockwell, P.J., Davis, R.A. (eds.): Introduction to time series and forecasting. Springer, New York (2002)

5. Cai, C., Harrington, P.d.B.: Different discrete wavelet transforms applied to denoising analytical data. J. Chem. Inform. Model. 38(6), 1161–1170. 10.1021/ci980210j (1998)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3