Animal-Mediated Ecosystem Process Rates in Forests and Grasslands are Affected by Climatic Conditions and Land-Use Intensity

Author:

Ambarlı DidemORCID,Simons Nadja K.,Wehner Katja,Kämper Wiebke,Gossner Martin M.,Nauss Thomas,Neff Felix,Seibold Sebastian,Weisser Wolfgang,Blüthgen Nico

Abstract

AbstractDecomposition, vegetation regeneration, and biological control are essential ecosystem functions, and animals are involved in the underlying processes, such as dung removal, seed removal, herbivory, and predation. Despite evidence for declines of animal diversity and abundance due to climate change and land-use intensification, we poorly understand how animal-mediated processes respond to these global change drivers. We experimentally measured rates of four ecosystem processes in 134 grassland and 149 forest plots in Germany and tested their response to climatic conditions and land-use intensity, that is, grazing, mowing, and fertilization in grasslands and the proportion of harvested wood, non-natural trees, and deadwood origin in forests. For both climate and land use, we distinguished between short-term effects during the survey period and medium-term effects during the preceding years. Forests had significantly higher process rates than grasslands. In grasslands, the climatic effects on the process rates were similar or stronger than land-use effects, except for predation; land-use intensity negatively affected several process rates. In forests, the land-use effects were more pronounced than the climatic effects on all processes except for predation. The proportion of non-natural trees had the greatest impact on the process rates in forests. The proportion of harvested wood had negative effects, whereas the proportion of anthropogenic deadwood had positive effects on some processes. The effects of climatic conditions and land-use intensity on process rates mirror climatic and habitat effects on animal abundance, activity, and resource quality. Our study demonstrates that land-use changes and interventions affecting climatic conditions will have substantial impacts on animal-mediated ecosystem processes.

Funder

Deutsche Forschungsgemeinschaft

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Springer Science and Business Media LLC

Subject

Ecology,Environmental Chemistry,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3