Author:
Hauck Markus,Klinge Michael,Erasmi Stefan,Dulamsuren Choimaa
Abstract
AbstractTrends for increased vegetation greenness based on satellite-derived data have been repeatedly published for the temperate grassland biome (including forest steppes) of eastern Inner Asia since 1982. Although this greening trend has been attenuated or partially reversed by drought in the early twenty-first century, linear increases in the Normalized Difference Vegetation Index (NDVI) or other parameters of vegetation greenness are nevertheless evident when the period since 1982 is regarded. However, the question arises whether these trends are part of a long-term trend driven by climate change, as simultaneously forests in the region show widespread drought-induced growth reductions and mortality outbreaks. Therefore, we hypothesized that the post-1982 greening trend was neither part of a long-term trend nor unprecedented. To test this hypothesis, we analyzed monthly maximum NDVI data from AVHRR time series and correlated these data with standardized tree-ring data ofLarix sibiricafrom two regions of western Mongolia. We used linear regression to model the NDVI from tree-ring anomalies and to reconstruct the NDVI since 1940. These reconstructions show that the availability of satellite-based NDVI data coincidentally began during a dry period of low vegetation greenness in the early 1980s and was followed by a wet phase in the 1990s, producing the linear greening trend. No positive long-term trend in the reconstructed NDVI was observed from 1940 to 2010. This result rules out a recent climate change-driven greening trend for the grasslands and forest steppes of western Mongolia and calls into question its existence for all of eastern Inner Asia.
Funder
Volkswagen Foundation
Albert-Ludwigs-Universität Freiburg im Breisgau
Publisher
Springer Science and Business Media LLC
Subject
Ecology,Environmental Chemistry,Ecology, Evolution, Behavior and Systematics
Reference95 articles.
1. Anyamba A, Tucker CJ. 2012. Historical perspectives on AVHRR NDVI and vegetation drought monitoring. In: Anderson MC, Verdin JP, Wardlow BD, Eds. Remote sensing of drought. Innovative monitoring approaches. Boca Raton: CRC Press. pp 23–49.
2. Babst F, Bouriaud O, Poulter B, Trouet V, Girardin MP, Frank DC. 2019. Twentieth century redistribution in climatic drivers of global tree growth. Sci Adv 5:eeat4313.
3. Beck PSA, Juday GP, Alix C, Barber VA, Winslow SE, Sousa EE, Heiser P, Herriges JD, Goetz SJ. 2011. Changes in forest productivity across Alaska consistent with biome shift. Ecol Lett 14:373–379.
4. Berner LT, Massey R, Jantz P, Forbes BC, Macias-Fauria M, Myers-Smith I, Kumpula T, Gauthier G, Andreu-Hayles L, Gaglioti BV, Burns P, Zetterberg P, D’Arrigo R, Goetz SJ. 2020. Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nat Commun 11:4621.
5. Bjerke JW, Treharne R, Vikhamar-Schuler D, Karlsen SR, Ravolainen V, Bokhorst S, Phoenix GK, Bochenek Z, Tømmervik H. 2017. Understanding the drivers of extensive plant damage in boreal and Arctic ecosystems: insights from field surveys in the aftermath of damage. Sci Total Environ 599–600:1965–1976.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献