Polycyclic Aromatic Hydrocarbons (PAHs) Sample Preparation and Analysis in Beverages: A Review

Author:

Peng Pau Lian,Lim Lee Hoon

Abstract

AbstractThe monitoring of food contaminants is of interests to both food regulatory bodies and the consumers. This literature review covers polycyclic aromatic hydrocarbons (PAHs) with regard to their background, sources of exposures, and occurrence in food and environment as well as health hazards. Furthermore, analytical methods focusing on the analysis of PAHs in tea, coffee, milk, and alcoholic samples for the last 16 years are presented. Numerous experimental methods have been developed aiming to obtain better limits of detections (LODs) and percent recoveries as well as to reduce solvent consumption and laborious work. These include information such as the selected PAHs analyzed, food matrix of PAHs, methods of extraction, cleanup procedure, LOD, limits of quantitation (LOQ), and percent recovery. For the analysis of tea, coffee, milk, and alcoholic samples, a majority of the research papers focused on the 16 US Environmental Protection Agency PAHs, while PAH4, PAH8, and methylated PAHs were also of interests. Extraction methods range from the classic Soxhlet extraction and liquid–liquid extraction to newer methods such as QuEChERS, dispersive solid-phase microextraction, and magnetic solid-phase extraction. The cleanup methods involved mainly the use of column chromatography and SPE filled with either silica or Florisil adsorbents. Gas chromatography and liquid chromatography coupled with mass spectrometry or fluorescence detectors are the main analytical instruments used. A majority of the selected combined methods used are able to achieve LODs and percent recoveries in the ranges of 0.01–5 ug/kg and 70–110%, respectively, for the analysis of tea, coffee, milk, and alcoholic samples.

Publisher

Springer Science and Business Media LLC

Subject

Safety Research,Safety, Risk, Reliability and Quality,Applied Microbiology and Biotechnology,Food Science,Analytical Chemistry

Reference172 articles.

1. Abddel-Shafy HI, Mansour MSM (2016) A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Pet 25(1):107–123

2. Adisa A, Jimenez A, Woodham C, Anthony K, Nguyen T, Saleh MA (2015) Determination of polycyclic aromatic hydrocarbons in dry tea. J Environ Sci Heal Part B Pestic Food Contam Agric Wastes 50(8):552–559

3. Agency for Toxic Substances and Disease Registry (ATSDR) (2009a) What health effects are associated with PAH exposure https://www.atsdr.cdc.gov/csem/polycyclic-aromatic-hydrocarbons/health_effects.html

4. Agency for Toxic Substances and Disease Registry (ATSDR) (2009b) What are the standards and regulations for PAHs exposure? https://www.atsdr.cdc.gov/csem/polycyclic-aromatic-hydrocarbons/standards_and_regulations_for_exposure.html

5. Aguinaga N, Campillo N, Viñas P, Hernández-Córdoba M (2007) Determination of 16 polycyclic aromatic hydrocarbons in milk and related products using solid-phase microextraction coupled to gas chromatography-mass spectrometry. Anal Chim Acta 596(2):285–290

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3