Abstract
AbstractWe consider multi-edge or banana graphs $$b_n$$
b
n
on n internal edges $$e_i$$
e
i
with different masses $$m_i$$
m
i
. We focus on the cut banana graphs $$\Im (\Phi _R(b_n))$$
ℑ
(
Φ
R
(
b
n
)
)
from which the full result $$\Phi _R(b_n)$$
Φ
R
(
b
n
)
can be derived through dispersion. We give a recursive definition of $$\Im (\Phi _R(b_n))$$
ℑ
(
Φ
R
(
b
n
)
)
through iterated integrals. We discuss the structure of this iterated integral in detail. A discussion of accompanying differential equations, of monodromy and of a basis of master integrals is included.
Funder
Humboldt-Universität zu Berlin
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Reference39 articles.
1. Veltman, M.: Unitarity and causality in a renormalizable field theory with unstable particles. Physica 29, 186 (1963)
2. Brödel, J., Duhr, C., Dulat, F., Penante, B., Tancredi, L.: Elliptic Feynman integrals and pure functions. J. High Energy Phys. 2019, 23 (2019). arXiv:1809.10698 [hep-th]
3. Broedel, J., Duhr, C., Dulat, F., Marzucca, R., Penante, B., Tancredi, L.: An analytic solution for the equal-mass banana graph. JHEP 09, 112 (2019)
4. Caffo, M., Czyż, H., Laporta, S., Remiddi, E.: The master differential equations for the 2-loop sunrise selfmass amplitudes. Nuovo Cim. 111(4), 365–389 (1998). arXiv:hep-th/9805118
5. Remiddi, E., Tancredi, L.: Schouten identities for Feynman graph amplitudes; the Master Integrals for the two-loop massive sunrise graph. Nucl. Phys. B 880, 343 (2014). arXiv:1311.3342 [hep-th]
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献