Lagrangian multiforms on coadjoint orbits for finite-dimensional integrable systems

Author:

Caudrelier VincentORCID,Dell’Atti MartaORCID,Singh Anup AnandORCID

Abstract

AbstractLagrangian multiforms provide a variational framework to describe integrable hierarchies. The case of Lagrangian 1-forms covers finite-dimensional integrable systems. We use the theory of Lie dialgebras introduced by Semenov-Tian-Shansky to construct a Lagrangian 1-form. Given a Lie dialgebra associated with a Lie algebra $$\mathfrak {g}$$ g and a collection $$H_k$$ H k , $$k=1,\dots ,N$$ k = 1 , , N , of invariant functions on $$\mathfrak {g}^*$$ g , we give a formula for a Lagrangian multiform describing the commuting flows for $$H_k$$ H k on a coadjoint orbit in $$\mathfrak {g}^*$$ g . We show that the Euler–Lagrange equations for our multiform produce the set of compatible equations in Lax form associated with the underlying r-matrix of the Lie dialgebra. We establish a structural result which relates the closure relation for our multiform to the Poisson involutivity of the Hamiltonians $$H_k$$ H k and the so-called double zero on the Euler–Lagrange equations. The construction is extended to a general coadjoint orbit by using reduction from the free motion of the cotangent bundle of a Lie group. We illustrate the dialgebra construction of a Lagrangian multiform with the open Toda chain and the rational Gaudin model. The open Toda chain is built using two different Lie dialgebra structures on $$\mathfrak {sl}(N+1)$$ sl ( N + 1 ) . The first one possesses a non-skew-symmetric r-matrix and falls within the Adler–Kostant–Symes scheme. The second one possesses a skew-symmetric r-matrix. In both cases, the connection with the well-known descriptions of the chain in Flaschka and canonical coordinates is provided.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3