Abstract
AbstractWe prove that uniformly small short-range perturbations do not close the bulk gap above the ground state of frustration-free quantum spin systems that satisfy a standard local topological quantum order condition. In contrast with earlier results, we do not require a positive lower bound for finite-system spectral gaps uniform in the system size. To obtain this result, we extend the Bravyi–Hastings–Michalakis strategy so it can be applied to perturbations of the GNS Hamiltonian of the infinite-system ground state.
Funder
National Science Foundation
Deutsche Forschungsgemeinschaft
Alexander von Humboldt-Stiftung
Publisher
Springer Science and Business Media LLC
Reference64 articles.
1. Affleck, I., Kennedy, T., Lieb, E.H., Tasaki, H.: Rigorous results on valence-bond ground states in antiferromagnets. Phys. Rev. Lett. 59, 799 (1987)
2. Anshu, A.: Improved local spectral gap thresholds for lattices of finite size. Phys. Rev. B 101, 165104 (2020)
3. Bachmann, S., Bols, A., De Roeck, W., Fraas, M.: Quantization of conductance in gapped interacting systems. Ann. Henri Poincaré 19, 695–708 (2018)
4. Bachmann, S., Bols, A., De Roeck, W., Fraas, M.: Rational indices for quantum ground state sectors. J. Math. Phys. 62, 011901 (2021). arXiv:2001.06458
5. Bachmann, S., De Roeck, W., Donvil, B., Fraas, M.: Stability of invertible, frustration-free ground states against large perturbations. Quantum 2022, 06–11 (2022)