1. Grama, M., Musat, M., Muñoz-González, L., Passerat-Palmbach, J., Rueckert, D., Alansary, A.: Robust aggregation for adaptive privacy preserving federated learning in healthcare. arXiv:2009.08294. (2020)
2. Rahman, A., Hossain, M.S., Muhammad, G., Kundu, D., Debnath, T., Rahman, M., Khan, M.S.I., Tiwari, P., Band, S.S.: Federated learning-based AI approaches in smart healthcare: concepts, taxonomies, challenges and open issues. Clust. Comput. 26(4), 2271–2311 (2023)
3. Kumar, Y., Singla, R.: Federated learning systems for healthcare: perspective and recent progress. Feder. Learn. Syst. Towards Next-Gener. AI. 141–156 (2021)
4. Arikumar, K.S., Prathiba, S.B., Alazab, M., Gadekallu, T.R., Pandya, S., Khan, J.M., Moorthy, R.S.: FL-PMI: federated learning-based person movement identification through wearable devices in smart healthcare systems. Sensors. 22(4), 1377 (2022)
5. Terrail, J.O.D., Ayed, S.S., Cyffers, E., Grimberg, F., He, C., Loeb, R., Mangold, P., Marchand, T., Marfoq, O., Mushtaq, E., Muzellec, B.: FlambyDatasets and benchmarks for cross-silo federated learning in realistic healthcare settings. arXiv:2210.04620. (2022)