Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Software
Reference34 articles.
1. Fenanir, S., Semchedine, F., Baadache, A.: A machine learning-based lightweight intrusion detection system for the internet of things. Rev. Intell. Artif. 33(3), 203–211 (2019)
2. Koroniotis, N., Moustafa, N., Sitnikova, E., Turnbull, B.: Towards the development of realistic botnet dataset in the internet of things for network forensic analytics: bot-iot dataset. Futur. Gener. Comput. Syst. 100, 779–796 (2019)
3. Ghosh, J., Kumar, D., Tripathi, R.: Features extraction for network intrusion detection using genetic algorithm (GA). In: Gunjan, V.K. (ed.) Modern Approaches in Machine Learning and Cognitive Science: A Walkthrough, pp. 13–25. Springer, Cham (2020)
4. Gao, J., Chai, S., Zhang, B., Xia, Y.: Research on network intrusion detection based on incremental extreme learning machine and adaptive principal component analysis. Energies 12(7), 1223 (2019)
5. Abualigah, L., Jamal Dulaimi, A.: A novel feature selection method for data mining tasks using hybrid sine cosine algorithm and genetic algorithm. Clust. Comput. 24, 1–16 (2021)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献