Environmental assessment of a disruptive innovation: comparative cradle-to-gate life cycle assessments of carbon-reinforced concrete building component

Author:

Backes Jana Gerta,Traverso Marzia,Horvath Arpad

Abstract

Abstract Purpose How to build in more environmentally sustainable manner? This issue is increasingly coming to the fore in construction sector, which is responsible for a relevant share of resource depletion, solid waste, and greenhouse gas (GHG) emissions. Carbon-reinforced concrete (CRC), as a disruptive innovation of composite building material, requires less resources and enables new forms — but does it make CRC more environmentally sustainable than steel-reinforced concrete (SRC)? This article aims to assess and compare the environmental impact of 45 material and production scenarios of a CRC with a SRC double wall. Methods The life cycle assessment method (LCA) is used to assess environmental impacts. The functional unit is a double wall and the reference flows are 1 m3 for concrete and 1 kg for fiber. CML methodology is used for life cycle impact assessment (LCIA) in the software GaBi© ts 10.0. A sensitivity analysis focuses on electricity grid mixes, concrete mixes, and steel production scenarios. Results The midpoint indicator climate change respective global warming potential (in kg CO2e) ranges between 453 kg CO2e and 754 kg CO2e per CRC double wall. A comparable SRC double wall results in emissions of 611–1239 kg CO2e. Even though less raw material is needed for CRC, it does not represent a clear advantage over SRC in terms of climate change. In a comparison, the production of steel (blast furnace vs. electric arc furnace vs. recycled steel) and the choice of cement type are of decisive relevance. For concrete mixes, a mixture of Portland cement and blast furnace slag (CEM III) is beneficial to pure Portland cement (CEM) I. For fiber production, styrene-butadiene rubber (SBR) has an advantage over epoxy resin (EP) impregnation and the use of renewable energy could reduce emissions of fiber production up to 60%. Conclusion CRC requires less material (concrete cover) than SRC, however, exhibits comparable CO2e to SRC — depending on the production process of steel. In the future, fiber production and impregnation should be studied in detail. Since in terms of climate change neither wall (CRC vs. SRC) clearly performs better, the two other pillars of sustainability (economic and social, resulting in LCSA) and innovative building components must be focused on. Graphical Abstract

Funder

Deutsche Forschungsgemeinschaft

RWTH Aachen University

Publisher

Springer Science and Business Media LLC

Subject

General Environmental Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3