Maximisation of Bending and Membrane Frequencies of Vibration of Variable Stiffness Composite Laminated Plates by a Genetic Algorithm

Author:

Moreira Simões Tatiana,Ribeiro PedroORCID,Conceição António Carlos

Abstract

Abstract Purpose In comparison to traditional, constant stiffness laminates, variable stiffness composite laminates (VSCL) with curvilinear fibres represent an extra analysis effort. It is the purpose of this work to present and test a relatively simple optimisation procedure, in order to find the maximum fundamental frequency of vibration in bending and in in-plane vibrations. It is also intended to explain why certain fibre paths lead to higher frequencies. Methods The optimisation is performed using a genetic algorithm (GA), which is described in detail. The bending and the in-plane plate models are based on the p-version Finite Element Method. Each model requires a small number of degrees of freedom, an important feature because applying the GA involves the solution of a large number of eigenvalue problems. In order to support the physical interpretation of the optimal designs, mode shapes and stress fields corresponding to some optimal solutions are illustrated. Results Single- and multi-layer plates with different boundary conditions and fibre path types are studied. Fibre paths that lead to maximum fundamental frequencies are found and justified. The consequences that maximising the first frequency has on the higher-order modes of vibration are studied. Conclusion The proposed optimisation and modelling methods are effective. Curvilinear fibres with the characteristics considered led to the maximum first natural frequency of vibration in a few cases, but not all. Particularly in in-plane vibrations, curvilinear fibres can provide major gains in comparison to straight fibres. The increase in the vibration frequency is accompanied by, overall, larger stresses.

Funder

Fundação para a Ciência e a Tecnologia

Universidade do Porto

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3