Stable Carbon and Nitrogen Isotope Variability of Bone Collagen to Determine the Number of Isotopically Distinct Specimens

Author:

Hyland CorrieORCID,Scott Michael B.ORCID,Routledge JenniferORCID,Szpak PaulORCID

Abstract

AbstractArchaeological and palaeontological excavations frequently produce large quantities of highly fragmentary bone. These bones can help to answer questions regarding past environments and human and animal lifeways via a number of analytical techniques but this potential is limited by the inability to distinguish individual animals and generate sufficiently large samples. Using stable carbon and nitrogen isotope values of bone collagen (δ13C, δ15N), we present a metric to identify the number of isotopically distinct specimens (NIDS) from highly fragmented faunal assemblages. We quantified the amount of intra-individual isotopic variation by generating isotopic data from multiple elements from individual animals representing a wide variety of taxa as well as multiple samples from the same skeletal element. The mean intra-individual variation (inter-bone) was 0.52‰ (σ = 0.45) (Euclidean distance between two points in isotopic bivariate space), while the mean intra-bone variation was 0.63‰ (σ = 0.06). Using archaeological data consisting of large numbers of individual taxa from single sites, the mean inter-individual isotopic variation was 1.45‰ (σ = 1.15). We suggest the use of 1.50‰ in bivariate (δ13C, δ15N) space as a metric to distinguish NIDS. Blind tests of modelled archaeological datasets of different size and isotopic variability resulted in a rate of misclassification (two or more elements from the same individual being classified as coming from different individuals) of < 5%.

Funder

Canada Excellence Research Chairs, Government of Canada

Ontario Graduate Scholarship

Social Sciences and Humanities Research Council Canada

Bagnani Trust

Publisher

Springer Science and Business Media LLC

Subject

Archaeology,Archaeology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3