Diabetic Foot Ulcer Detection: Combining Deep Learning Models for Improved Localization

Author:

Sarmun Rusab,Chowdhury Muhammad E. H.ORCID,Murugappan M.,Aqel Ahmed,Ezzuddin Maymouna,Rahman Syed Mahfuzur,Khandakar Amith,Akter Sanzida,Alfkey Rashad,Hasan Anwarul

Abstract

AbstractDiabetes mellitus (DM) can cause chronic foot issues and severe infections, including Diabetic Foot Ulcers (DFUs) that heal slowly due to insufficient blood flow. A recurrence of these ulcers can lead to 84% of lower limb amputations and even cause death. High-risk diabetes patients require expensive medications, regular check-ups, and proper personal hygiene to prevent DFUs, which affect 15–25% of diabetics. Accurate diagnosis, appropriate care, and prompt response can prevent amputations and fatalities through early and reliable DFU detection from image analysis. We propose a comprehensive deep learning-based system for detecting DFUs from patients’ feet images by reliably localizing ulcer points. Our method utilizes innovative model ensemble techniques—non-maximum suppression (NMS), Soft-NMS, and weighted bounding box fusion (WBF)—to combine predictions from state-of-the-art object detection models. The performances of diverse cutting-edge model architectures used in this study complement each other, leading to more generalized and improved results when combined in an ensemble. Our WBF-based approach combining YOLOv8m and FRCNN-ResNet101 achieves a mean average precision (mAP) score of 86.4% at the IoU threshold of 0.5 on the DFUC2020 dataset, significantly outperforming the former benchmark by 12.4%. We also perform external validation on the IEEE DataPort Diabetic Foot dataset which has demonstrated robust and reliable model performance on the qualitative analysis. In conclusion, our study effectively developed an innovative diabetic foot ulcer (DFU) detection system using an ensemble model of deep neural networks (DNNs). This AI-driven tool serves as an initial screening aid for medical professionals, augmenting the diagnostic process by enhancing sensitivity to potential DFU cases. While recognizing the presence of false positives, our research contributes to improving patient care through the integration of human medical expertise with AI-based solutions in DFU management.

Funder

Qatar National Research Fund

International Research Collaboration Co-Fund (IRCC) grant

Qatar University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3