Correlation of the solubility of isoniazid in some aqueous cosolvent mixtures using different mathematical models

Author:

Cuellar-Carmona Yasser Leonid,Cerquera Nestor Enrique,Cardenas-Torres Rossember Edén,Ortiz Claudia Patricia,Martínez Fleming,Delgado Daniel RicardoORCID

Abstract

AbstractSolubility is one of the most important physicochemical properties, because it is related to some industrial processes such as: formulation, preformulation, purification and quantification. The experimental determination of solubility requires rigorous processes that involve a significant amount of resources. In this context, mathematical models allow estimating solubility under conditions different from the experimental ones from a limited number of data. The objective of this research was to evaluate the pertinence of 10 mathematical models (Extended Hildebrand, van’t Hoff, Two-parameter Weibull, Buchowski–Ksiazczak $$\lambda h$$ λ h , van’t Hoff-Yaws, Apelblat, Wilson, NRTL, Modified Wilson and van’t Hoff-Modified Wilson) in the calculation of the solubility of isoniazid in PEG 200 (1) + Water (2) cosolvent mixtures, the parameters of each model were calculated using Python, Pandas and the NumPy and SciPy library. Once each model was evaluated, two models were defined as the best alternatives based on their predictive power and mathematical simplicity. Thus, the van’t Hoff and Modified Wilson models were combined to obtain an equation that allows the calculation of solubility as a function of temperature and cosolvent composition, obtaining MRD% less than 3.0. In conclusion, mathematical models represent a good prediction tool being a potential alternative in relation to the optimization of some industrial processes related to solubility.

Funder

Universidad Cooperativa de Colombia

Cooperative University of Colombia

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3