Omecamtiv mecarbil evokes diastolic dysfunction and leads to periodic electromechanical alternans

Author:

Fülöp Gábor Á.,Oláh Attila,Csipo Tamas,Kovács Árpád,Pórszász Róbert,Veress Roland,Horváth Balázs,Nagy László,Bódi Beáta,Fagyas Miklós,Helgadottir Solveig Lind,Bánhegyi Viktor,Juhász Béla,Bombicz Mariann,Priksz Daniel,Nanasi Peter,Merkely Béla,Édes István,Csanádi Zoltán,Papp Zoltán,Radovits Tamás,Tóth AttilaORCID

Abstract

AbstractOmecamtiv mecarbil (OM) is a promising novel drug for improving cardiac contractility. We tested the therapeutic range of OM and identified previously unrecognized side effects. The Ca2+ sensitivity of isometric force production (pCa50) and force at low Ca2+ levels increased with OM concentration in human permeabilized cardiomyocytes. OM (1 µM) slowed the kinetics of contractions and relaxations and evoked an oscillation between normal and reduced intracellular Ca2+ transients, action potential lengths and contractions in isolated canine cardiomyocytes. Echocardiographic studies and left ventricular pressure–volume analyses demonstrated concentration-dependent improvements in cardiac systolic function at OM concentrations of 600–1200 µg/kg in rats. Administration of OM at a concentration of 1200 µg/kg was associated with hypotension, while doses of 600–1200 µg/kg were associated with the following aspects of diastolic dysfunction: decreases in E/A ratio and the maximal rate of diastolic pressure decrement (dP/dtmin) and increases in isovolumic relaxation time, left atrial diameter, the isovolumic relaxation constant Tau, left ventricular end-diastolic pressure and the slope of the end-diastolic pressure–volume relationship. Moreover, OM 1200 µg/kg frequently evoked transient electromechanical alternans in the rat in vivo in which normal systoles were followed by smaller contractions (and T-wave amplitudes) without major differences on the QRS complexes. Besides improving systolic function, OM evoked diastolic dysfunction and pulsus alternans. The narrow therapeutic window for OM may necessitate the monitoring of additional clinical safety parameters in clinical application.

Funder

Ministry for National Economy of Hungary, co-financed by the European Union and the European Regional Development Fund

Ministry of Human Capacities of Hungary, co-financed by the European Union and the European Regional Development Fund

The Thematic Excellence Programme of the Ministry for Innovation and Technology, also supported from the National Research, Development and Innovation Fund of Hungary

National Research, Development and Innovation Fund of Hungary

National Research, Development and Innovation Fund of Hungary.

Higher Education Institutional Excellence Programme of the Ministry for Innovation and Technology in Hungary

The Thematic Excellence Programme of the Ministry for Innovation and Technology was also supported from the National Research, Development and Innovation Fund of Hungary

University of Debrecen

Publisher

Springer Science and Business Media LLC

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Reference31 articles.

1. Bakkehaug JP, Kildal AB, Engstad ET, Boardman N, Naesheim T, Ronning L, Aasum E, Larsen TS, Myrmel T, How OJ (2015) Myosin activator omecamtiv mecarbil increases myocardial oxygen consumption and impairs cardiac efficiency mediated by resting myosin ATPase activity. Circ Heart Fail 8:766–775. https://doi.org/10.1161/CIRCHEARTFAILURE.114.002152

2. Baudenbacher F, Schober T, Pinto JR, Sidorov VY, Hilliard F, Solaro RJ, Potter JD, Knollmann BC (2008) Myofilament Ca2+ sensitization causes susceptibility to cardiac arrhythmia in mice. J Clin Invest 118:3893–3903. https://doi.org/10.1172/JCI36642

3. Cleland JG, Teerlink JR, Senior R, Nifontov EM, Mc Murray JJ, Lang CC, Tsyrlin VA, Greenberg BH, Mayet J, Francis DP, Shaburishvili T, Monaghan M, Saltzberg M, Neyses L, Wasserman SM, Lee JH, Saikali KG, Clarke CP, Goldman JH, Wolff AA, Malik FI (2011) The effects of the cardiac myosin activator, omecamtiv mecarbil, on cardiac function in systolic heart failure: a double-blind, placebo-controlled, crossover, dose-ranging phase 2 trial. Lancet 378:676–683. https://doi.org/10.1016/S0140-6736(11)61126-4

4. Diaz ME, Eisner DA, O’Neill SC (2002) Depressed ryanodine receptor activity increases variability and duration of the systolic Ca2+ transient in rat ventricular myocytes. Circ Res 91:585–593. https://doi.org/10.1161/01.res.0000035527.53514.c2

5. Greenberg BH, Chou W, Saikali KG, Escandon R, Lee JH, Chen MM, Treshkur T, Megreladze I, Wasserman SM, Eisenberg P, Malik FI, Wolff AA, Shaburishvili T (2015) Safety and tolerability of omecamtiv mecarbil during exercise in patients with ischemic cardiomyopathy and angina. JACC Heart Fail 3:22–29. https://doi.org/10.1016/j.jchf.2014.07.009

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3