Derandomization for Sliding Window Algorithms with Strict Correctness∗

Author:

Ganardi MosesORCID,Hucke Danny,Lohrey Markus

Abstract

AbstractIn the sliding window streaming model the goal is to compute an output value that only depends on the last n symbols from the data stream. Thereby, only space sublinear in the window size n should be used. Quite often randomization is used in order to achieve this goal. In the literature, one finds two different correctness criteria for randomized sliding window algorithms: (i) one can require that for every data stream and every time instant t, the algorithm computes a correct output value with high probability, or (ii) one can require that for every data stream the probability that the algorithm computes at every time instant a correct output value is high. Condition (ii) is stronger than (i) and is called “strict correctness” in this paper. The main result of this paper states that every strictly correct randomized sliding window algorithm can be derandomized without increasing the worst-case space consumption.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Theoretical Computer Science

Reference25 articles.

1. Aggarwal, C.C.: Data streams - models and algorithms springer (2007)

2. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the frequency moments. J. Comput. Syst. Sci. 58(1), 137–147 (1999)

3. Andrade, H.C.M., Gedik, B., Turaga, D.S.: Fundamentals of stream processing: application design, systems, and analytics cambridge university press (2014)

4. Arasu, A., Manku, G.S.: Approximate counts and quantiles over sliding windows (2004)

5. Babcock, B., Datar, M., Motwani, R., O’Callaghan, L.: Maintaining variance and k-medians over data stream windows. In: Proceedings of PODS 2003, pages 234–243 ACM (2003)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Longest Common Subsequence with Gap Constraints;Lecture Notes in Computer Science;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3