Pairwise Alignment of Archaeological Fragments Through Morphological Characterization of Fracture Surfaces

Author:

ElNaghy HananORCID,Dorst Leo

Abstract

AbstractWe design a computational method to align pairs of counter-fitting fracture surfaces of digitized archaeological artefacts. The challenge is to achieve an accurate fit, even though the data is inherently lacking material through abrasion, missing geometry of the counterparts, and may have been acquired by different scanning practices. We propose to use the non-linear complementarity-preserving properties of Mathematical Morphology to guide the pairwise fitting in a manner inherently insensitive to these aspects. In our approach, the fracture surface is tightly bounded by a concise set of characteristic multi-local morphological features. Such features and their descriptors are computed by analysing the discrete distance transform and its causal scale-space information. This compact morphological representation provides the information required for accurately aligning the fracture surfaces through applying a RANSAC-based algorithm incorporating weighted Procrustes to the morphological features, followed by ICP on morphologically selected ‘flank’ regions. We propose new criteria for evaluating the resulting pairwise alignment quality, taking into consideration both penetration and gap regions. Careful quantitative evaluation on real terracotta fragments confirms the accuracy of our method under the expected archaeological noise. We show that our morphological method outperforms a recent linear pairwise alignment method and briefly discuss our limitations and the effects of variations in digitization and abrasion on our proposed alignment technique.

Funder

EU H2020 Research and Innovation Action

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3