1. Andreassen, A., Bahri, Y., Neyshabur, B., & Roelofs, R. (2021). The evolution of out-of-distribution robustness throughout fine-tuning. arXiv preprint arXiv:2106.15831
2. Arpit, D., Wang, H., Zhou, Y., & Xiong, C. (2021). Ensemble of averages: Improving model selection and boosting performance in domain generalization. arXiv preprint arXiv:2110.10832
3. Bai, H., Zhou, F., & Hong, L., (2021) Nas-ood: Neural architecture search for out-of-distribution generalization. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 8320–8329).
4. Barbu, A., Mayo, D., & Alverio, J., (2019) Objectnet: A large-scale bias-controlled dataset for pushing the limits of object recognition models. Advances in Neural Information Processing Systems 32.
5. Beery, S., Van Horn, G., & Perona, P. (2018) Recognition in terra incognita. In Proceedings of the European conference on computer vision (ECCV) (pp. 456–473).