SliderGAN: Synthesizing Expressive Face Images by Sliding 3D Blendshape Parameters

Author:

Ververas EvangelosORCID,Zafeiriou Stefanos

Abstract

AbstractImage-to-image (i2i) translation is the dense regression problem of learning how to transform an input image into an output using aligned image pairs. Remarkable progress has been made in i2i translation with the advent of deep convolutional neural networks and particular using the learning paradigm of generative adversarial networks (GANs). In the absence of paired images, i2i translation is tackled with one or multiple domain transformations (i.e., CycleGAN, StarGAN etc.). In this paper, we study the problem of image-to-image translation, under a set of continuous parameters that correspond to a model describing a physical process. In particular, we propose the SliderGAN which transforms an input face image into a new one according to the continuous values of a statistical blendshape model of facial motion. We show that it is possible to edit a facial image according to expression and speech blendshapes, using sliders that control the continuous values of the blendshape model. This provides much more flexibility in various tasks, including but not limited to face editing, expression transfer and face neutralisation, comparing to models based on discrete expressions or action units.

Funder

Imperial College London

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Reference42 articles.

1. Alami Mejjati, Y., Richardt, C., Tompkin, J., Cosker, D., & Kim, K.I. (2018). Unsupervised attention-guided image-to-image translation (pp. 3693–3703).

2. Amos, B., Ludwiczuk, B., & Satyanarayanan, M. (2016). Openface: A general-purpose face recognition library with mobile applications. Technical report CMU-CS-16-118, CMU School of Computer Science.

3. Arjovsky, M., Chintala, S., Bottou, L. (2017) Wasserstein generative adversarial networks. In Proceedings of the 34th international conference on machine learning, ICML 2017, Sydney, NSW, Australia, 6–11 August 2017, pp. 214–223.

4. Bach, F., Jenatton, R., Mairal, J., & Obozinski, G. (2012). Optimization with sparsity-inducing penalties. Foundations and Trends in Machine Learning, 4(1), 1–106.

5. Benitez-Quiroz, C. F., Srinivasan, R., & Martinez, A. M. (2016). Emotionet: An accurate, real-time algorithm for the automatic annotation of a million facial expressions in the wild. In 2016 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 5562–5570).

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3