Abstract
AbstractThis paper addresses a simple energy-based overset finite element method (EbO-FEM) to solve pseudo-static deformation problems consisting of overlapped meshes based on the domain composition method (DCM). This scheme is a non-iterative equation-based method for enforcing the continuity of the displacement field. Hence, the scheme consumes possible minimal computational costs for deformation problems with non-conforming overlapping meshes. The system’s total energy is augmented with continuity constraint energy (CCE) which is a function of the gaps in the displacement field between two overlapping regions. Subsequently, two conventional integration schemes, the Gauss-point projection, and the point-to-point projection, are utilized to discretize the CCE. It is confirmed that both schemes can yield accurate and unique solutions in the overlapped region of the finite element meshes. Further, we proposed a dimensionless relative penalty parameter (DRP). We found that DRP ranging between 1 to 10 is appropriate to robustly obtain accurate solutions for a wide range of scales, stiffness, and geometries, which is supported by three numerical simulations without increasing computational costs after assembling the global matrices and vectors.
Funder
Japan Society for the Promotion of Science London
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,General Engineering,Theoretical Computer Science,Software,Applied Mathematics,Computational Mathematics,Numerical Analysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献