Abstract
AbstractRecovering fluorine from end-of-life products is crucial for the sustainable production and consumption of fluorine-containing compounds because fluorspar, an important natural resource for fluorine, is currently at a supply risk. In this study, we investigated the feasibility of chemically recycling a fluorine-containing photovoltaic (PV) backsheet for fluoropolymer recycling. Herein, a PV backsheet consisting of laminated polyethylene terephthalate (PET) and polyvinylidene fluoride (PVDF) was treated with different concentrations of sodium hydroxide (NaOH) to hydrolyze the PET layer to water-soluble sodium terephthalate (Na2TP) and to separate pure PVDF layer as a solid material. Optimized alkaline conditions (up to 10 M NaOH at 100 °C for 2 h) were determined, under which 87% of the PET layer could be decomposed without any significant deterioration of the PVDF layer. The hydrolysis kinetics of PET layer in NaOH could be explained by the modified shrinking-core model. Considering that the mass of end-of-life PV panels in Japan is estimated to increase to approximately 280,000 tons per year by 2036, PV backsheets are attractive candidates for fluoropolymer recycling, which can be effectively achieved using chemical recycling approach demonstrated in this study.
Funder
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Subject
Mechanics of Materials,Waste Management and Disposal
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献