Utilization of alum sludge waste for production of eco-friendly blended cement

Author:

Mohamed O. A.ORCID,El-Gamal S. M. A.,Farghali A. A.

Abstract

AbstractThis work was focused on evaluating the suitability of replacing Portland cement (PC) by 5, 10 and 15 mass % of activated alum sludge waste (AAS) as a pozzolanic material. Exploitation of low-cost nanocomposite for bolstering the physical, mechanical, and stability against firing of PC–AAS-hardened composites was inspected. CuFe2O4 spinel nanoparticle with average particle size (~ 50 nm) was prepared. Inclusion of CuFe2O4 spinel in different PC–AAS-hardened composites bolsters their physicomechanical features at almost normal curing ages as well as their stability against firing. The positive impact of synthesized CuFe2O4 spinel was affirmed via TGA/DTG and XRD techniques, which indicated the presence of diverse hydration yields such as CSHs, CASHs, CFSH, and CuSH that enhance the overall physicomechanical characteristics and thermal stability of various PC–AAS-hardened composites. The composite containing (90 PC–10 AAS waste–2 CuFe2O4) offers many benefits from the economic and environmental view. Graphical abstract

Funder

Beni Suef University

Publisher

Springer Science and Business Media LLC

Subject

Mechanics of Materials,Waste Management and Disposal

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3