Abstract
AbstractWhile the position of alpine and arctic treelines can be predicted by climatic data, the underlying biological mechanisms are still unclear. In a recent paper in this journal (Körner C, Lenz A, Hoch G (2023) Chronic in situ tissue cooling does not reduce lignification at the Swiss treeline but enhances the risk of 'blue' frost rings. Alpine Botany https://doi.org/10.1007/s00035-023-00293-6) we presented results of an in situ stem-cooling experiment at a Swiss treeline site. The experiment provided answers to two entirely different questions, related to xylogenesis at treeline: (a) the absence of chronic effects of low temperature on lignification, and (b) a high time resolution insight into the rare occurrence of damages in young, still undifferentiated, and thus, non-lignified cells at the occasion of an exceptional early season frost event. In the last issue of Alpine Botany (August 7, 2023), our data had been re-interpreted by (Büntgen, Alpine Botany, 2023) by confusing (b) with (a). Cell death before secondary wall formation interrupts all metabolism, and thus, cannot exert a specific limitation of lignification. For the xylem to lignify, it requires a secondary cell wall in the first place. A frost damage in young tracheid cells is unsuitable for a dendrological treeline hypothesis based on a low-temperature threshold for lignification. Generally, the global pattern of treeline position is not associated with local freezing conditions.
Publisher
Springer Science and Business Media LLC