An experimental study on the effects of friction modifiers on wheel–rail dynamic interactions with various angles of attack

Author:

Yang Zhen,Zhang Pan,Moraal Jan,Li Zili

Abstract

AbstractBy modifying friction to the desired level, the application of friction modifiers (FMs) has been considered as a promising emerging tool in the railway engineering for increasing braking/traction force in poor adhesion conditions and mitigating wheel/rail interface deterioration, energy consumption, vibration and noise. Understanding the effectiveness of FMs in wheel–rail dynamic interactions is crucial to their proper applications in practice, which has, however, not been well explained. This study experimentally investigates the effects of two types of top-of-rail FM, i.e. FM-A and FM-B, and their application dosages on wheel–rail dynamic interactions with a range of angles of attack (AoAs) using an innovative well-controlled V-track test rig. The tested FMs have been used to provide intermediate friction for wear and noise reduction. The effectiveness of the FMs is assessed in terms of the wheel–rail adhesion characteristics and friction rolling induced axle box acceleration (ABA). This study provides the following new insights into the study of FM: the applications of the tested FMs can both reduce the wheel–rail adhesion level and change the negative friction characteristic to positive; stick–slip can be generated in the V-Track and eliminated by FM-A but intensified by FM-B, depending on the dosage of the FMs applied; the negative friction characteristic is not a must for stick–slip; the increase in ABA with AoA is insignificant until stick–slip occurs and the ABA can thus be influenced by the applications of FM.

Funder

H2020 European Institute of Innovation and Technology

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanical Engineering,Transportation,Computational Mechanics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3