Abstract
AbstractThe aim of this study is to develop coupled matrix formulations to characterize the dynamic interaction between the vehicle, track, and tunnel. The vehicle–track coupled system is established in light of vehicle–track coupled dynamics theory. The physical characteristics and mechanical behavior of tunnel segments and rings are modeled by the finite element method, while the soil layers of the vehicle–track–tunnel (VTT) system are modeled as an assemblage of 3-D mapping infinite elements by satisfying the boundary conditions at the infinite area. With novelty, the tunnel components, such as rings and segments, have been coupled to the vehicle–track systems using a matrix coupling method for finite elements. The responses of sub-systems included in the VTT interaction are obtained simultaneously to guarantee the solution accuracy. To relieve the computer storage and save the CPU time for the large-scale VTT dynamics system with high degrees of freedoms, a cyclic calculation method is introduced. Apart from model validations, the necessity of considering the tunnel substructures such as rings and segments is demonstrated. In addition, the maximum number of elements in the tunnel segment is confirmed by numerical simulations.
Funder
National Nature Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Computer Science Applications,Mechanical Engineering,Transportation,Computational Mechanics
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献