Evaluating the efficacy of Nd:YAG fourth harmonic (266 nm) in comparison with ArF excimer (193 nm) in laser corneal reshaping: ex vivo pilot study

Author:

Abdelhalim Ibrahim,Hamdy OmniaORCID,Khattab Mohamed A.,Abdelkawi Salwa,Hassab Elnaby Salah,Hassan Aziza Ahmed

Abstract

Abstract Purpose Laser corneal reshaping is a common eye surgery utilized to overcome many vision disorders. Different UV laser wavelengths can be effective in the treatment. However, the ArF excimer laser (193 nm) is the most commonly used due to its high absorption in the cornea. In the current study, we investigate the efficacy of applying a solid-state laser (Nd:YAG fourth harmonic at 266 nm) for the corneal reshaping procedure. Methods The utilized laser is generated using an optical setup based on a BBO nonlinear crystal which converts the Q-switched laser (532 nm) to its fourth harmonic (266 nm). Different pulse energies were applied with the same number of the shoots on ex vivo rabbit corneas, and the histological effect is studied. Moreover, the possible thermal damage on the treated corneal tissues was inspected via electron microscope. Additionally, the DNA damage on the corneal cells due to the application of the proposed laser was examined and compared with the existing technology (ArF Excimer laser at 193 nm) using the comet assay. Results The histological examination revealed an appropriate ablation result with the minimum thermal effect at 1.5 mJ and 2.0 mJ. The overall results show that applying 50-shoots of the 1.5-mJ pulse energy using the proposed 266-nm solid-state laser produces the optimum ablation effect with the minimum thermal damage, and almost the same DNA damage occurred using the commercial 193-nm ArF excimer laser. Conclusion Solid-state laser at 266 nm could be a good alternative to the common 193-nm excimer laser for corneal reshaping procedures.

Funder

Cairo University

Publisher

Springer Science and Business Media LLC

Subject

Ophthalmology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3