1. Abu-El-Haija S, Perozzi B, Kapoor A, Alipourfard N, Lerman K, Harutyunyan H, Ver Steeg G, Galstyan A (2019) Mixhop: higher-order graph convolutional architectures via sparsified neighborhood mixing. In: International conference on machine learning. PMLR, pp 21–29
2. Bo D, Wang X, Shi C, Shen H (2021) Beyond low-frequency information in graph convolutional networks. Proc AAAI Conf Artif Intell 35:3950–3957
3. Cen Y, Hou Z, Wang Y, Chen Q, Luo Y, Yu Z, Zhang H, Yao X, Zeng A, Guo S, Dong Y, Yang Y, Zhang P, Dai G, Wang Y, Zhou C, Yang H, Tang J (2021) Cogdl: a toolkit for deep learning on graphs. arXiv preprint arXiv:2103.00959
4. Chamberlain B, Rowbottom J, Gorinova MI, Bronstein M, Webb S, Rossi E (2021) Grand: Graph neural diffusion. In: International conference on machine learning. PMLR, pp 1407–1418
5. Chen M, Wei Z, Huang Z, Ding B, Li Y (2020) Simple and deep graph convolutional networks. In: International conference on machine learning. PMLR, pp 1725–1735