Utility of Silver-nanoparticles for Nano-fluorimetric Determination of Vancomycin Hydrochloride in Pharmaceutical Formulation and Biological Fluids: Greenness Assessment

Author:

Mohamed Ahmed R.ORCID

Abstract

AbstractVancomycin hydrochloride (VANH) is a glycopeptide antibiotic commonly employed in the prophylaxis and therapy of various gram-positive bacterial life-threatening infections. Due to the narrow therapeutic window of VANH, its serum levels should be well-monitored to avoid its toxicity and to optimize its therapy. Herein, an innovative silver-nanoparticles enhanced fluorescence technique was designed for VANH rapid analysis in its pharmaceutical formulation and biological fluids. This technique is based on reinforcement of VANH fluorescence intensity with silver-nanoparticles that were synthesized by a redox reaction between VANH and silver nitrate in NaOH alkaline medium using polyvinylpyrrolidone as a stabilizer. The produced silver-nanoparticles were characterized by using UV–visible spectroscopy where they have an intense absorption maximum at 415 nm and transmission electron microscope (TEM) micrograph where they are spherical in shape with smooth surface morphology and size of 10.74 ± 2.44 nm. The fluorescence intensity was measured at 394 nm after excitation at 259 nm. Under optimum conditions, a good linear relationship was accomplished between the VANH concentration and the fluorescence intensity in a range of (1–36) ng/mL with a limit of detection of 0.29 ng/mL. Greenness assessment was performed using two assessment tools namely; eco-scale scoring and green analytical procedure index revealing excellent greenness of the proposed technique. The proposed technique was validated according to the International Conference on Harmonisation (ICH) recommendations and statistically compared with the reported HPLC method revealing no significant difference concerning accuracy and precision at p = 0.05. The proposed technique depended primarily on water as a cheap and eco-friendly solvent.

Funder

Egyptian Russian University

Publisher

Springer Science and Business Media LLC

Subject

Law,Clinical Biochemistry,Spectroscopy,Sociology and Political Science,Social Sciences (miscellaneous),Clinical Psychology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3