Origin–destination matrices from smartphone apps for bus networks

Author:

Barabino Benedetto,Coni Mauro,Di Francesco MassimoORCID,Obino Andrea,Ventura Roberto

Abstract

AbstractThe knowledge of passenger flows between each origin–destination (OD) pair is a main requirement in public transport for service planning, design, operation, and monitoring, and is represented by OD matrices. Although they can be determined by traditional approaches (e.g., surveys, ride-check counts, and/or smartcard-based methods), the availability of new technologies and the proliferation of portable devices triggers an emerging interest in building OD matrices from the apps of bus operators. This research proposes the first framework for the estimation of OD matrices on transit networks by processing smartphone app call detail records (SACDRs). The framework is experimentally tested on a sample of 30 workdays of an Italian bus operator. The results are represented by easy-to-read control dashboards based on maps, which help quantify and visualise the OD matrices in the metropolitan area of Cagliari (Italy). The experimentation shows that the framework can properly estimate the number of trips for both origin and destination w.r.t. OD matrices built from household surveys: the mean absolute error is on average lower than five movements for 90% of the origins and 85% of the destinations.

Funder

Ministero dell’Istruzione, dell’Università e della Ricerca

Fondazione di Sardegna

Università degli Studi di Brescia

Università degli Studi di Cagliari

Publisher

Springer Science and Business Media LLC

Reference62 articles.

1. American Public Transportation Association—APTA (2021) Transit ridership report fourth quarter and end-of-year 2017 (PDF). Archived from the original (PDF) on 27 Mar 2018. Retrieved 10 Oct 2021

2. Barabino B, Di Francesco M, Ventura R (2023) Evaluating fare evasion risk in bus transit networks. Transp Res Interdiscip Perspect 20:100854

3. Barabino B, Lai C, Olivo A (2020) Fare evasion in public transport systems: a review of the literature. Public Transp 12(1):27–88. https://doi.org/10.1007/s12469-019-00225-w

4. Barabino B, Di Francesco M, Mozzoni S (2014) an offline framework for handling automatic passenger counting raw data. IEEE Trans Intell Transp Syst 15(6):2443–2456

5. Ben-Akiva M, Macke P, Hsu P (1985) Alternative methods to estimate route-level trip tables and expand on-board surveys. Transp Res Rec 1037:1–11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3