Boron adsorption studies of poly(styrene-glycidyl methacrylate) latex: effect of modification agents

Author:

Tuncer CanselORCID,Işık Meliha

Abstract

AbstractPoly(styrene-glycidyl methacrylate) (PSGMA) latex was synthesized by emulsion polymerization method. PSGMA latex was modified with N-methyl-d-glucamine (NMDG), 1,2-bis(3-aminopropylamino)ethane (BAPE), N-(2-hydroxyethyl)ethylenediamine (HEA), and N,N'-dimethylethylenediamine (NMEA). The presence of N amount varying between 2.1 and 4.4% in the results of elemental analysis showed that the modification was successful. Boron adsorption studies were carried out using these modified latexes. The study was carried out using the curcumin method by UV–vis spectrophotometry. For the most effective adsorption process, at pH value of 9, the boron concentration was 10 ppm and the contact time was 60 min. It was found that latex modified with NMDG had a higher adsorption capacity (0.195 mmol/g) than other modified latexes. Particle sizes were determined by dynamic light scattering spectrometry and scanning electron microscopy (SEM) analyses. The particle diameter of PSGMA latex was found to be approximately 140 nm in SEM analysis and the particles were almost monodisperse. After PSGMA latex was modified with NMDG, BAPE, HEA, and NMEA agents and boron adsorption was performed, it was observed that the particle diameters increased to approximately 170, 270, 220, and 260 nm, respectively. An elemental analyzer was used to determine the %N of the structures. The %B2O3 of the structures was determined with a thermogravimetric analyzer. While thermal analysis studies showed that organic components were completely removed from the structure at 700 °C, residues ranging from 4.8 to 10.4% (%B2O3) were found in boron adsorption polymers. The %B amounts were determined with an inductively coupled plasma mass spectroscopy device. It was observed that the amount of adsorbed boron varied between 0.42 and 0.95%, and the highest amount of %B belonged to latex modified with NMDG due to its very simple structure and the location of the –OH groups. Graphical Abstract

Funder

Eskisehir Osmangazi University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3