Soil greenhouse gas fluxes from tropical vegetable farms, using forest as a reference

Author:

Quiñones Cecille Marie O.ORCID,Veldkamp EdzoORCID,Lina Suzette B.,Bande Marlito Jose M.,Arribado Arwin O.ORCID,Corre Marife D.ORCID

Abstract

AbstractField-based quantification of soil greenhouse gas emissions from the Philippines’ agriculture sector is missing for vegetable production systems, despite its substantial contribution to agricultural production. We quantified soil N2O emission, CH4 uptake, and CO2 efflux in vegetable farms and compared these to the secondary forest. Measurements were conducted for 13 months in 10 smallholder farms and nine forest plots on Andosol soil in Leyte, Philippines using static chambers. Soil N2O and CO2 emissions were higher, whereas CH4 uptake was lower in the vegetable farms than in the forest. Vegetable farms had annual fluxes of 12.7 ± 2.6 kg N2O-N ha−1 yr−1, −1.1 ± 0.2 kg CH4-C ha−1 yr−1, and 11.7 ± 0.7 Mg CO2-C ha−1 yr−1, whereas the forest had 0.10 ± 0.02 kg N2O-N ha ha−1 yr−1, −2.0 ± 0.2 kg CH4-C ha−1 yr−1, and 8.2 ± 0.7 Mg CO2-C ha−1 yr−1. Long-term high N fertilization rates in vegetable farms resulted in large soil mineral N levels, dominated by NO3 in the topsoil and down to 1-m depth, leading to high soil N2O emissions. Increased soil bulk density in the vegetable farms probably increased anaerobic microsites during the wet season and reduced CH4 diffusion from the atmosphere into the soil, resulting in decreased soil CH4 uptake. High soil CO2 emissions from the vegetable farms suggested decomposition of labile organic matter, possibly facilitated by plowing and large N fertilization rates. The global warming potential of these vegetable farms was 31 ± 2.7 Mg CO2-eq ha−1 yr−1 (100-year time frame).

Funder

Deutscher Akademischer Austauschdienst

Publisher

Springer Science and Business Media LLC

Subject

Soil Science,Agronomy and Crop Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3