Multi-experiment assessment of soil nitrous oxide emissions in sugarcane

Author:

Galdos M. V.,Soares J. R.,Lourenço K. S.,Harris P.,Zeri M.,Cunha-Zeri G.,Vargas V. P.,Degaspari I. A. M.,Cantarella H.

Abstract

AbstractSoil nitrous oxide (N2O) fluxes comprise a significant part of the greenhouse gas emissions of agricultural products but are spatially and temporally variable, due to complex interactions between climate, soil and management variables. This study aimed to identify the main factors that affect N2O emissions under sugarcane, using a multi-site database from field experiments. Greenhouse gas fluxes, soil, climate, and management data were obtained from 13 field trials spanning the 2011–2017 period. We conducted exploratory, descriptive and inferential data analyses in experiments with varying fertiliser and stillage (vinasse) type and rate, and crop residue rates. The most relevant period of high N2O fluxes was the first 46 days after fertiliser application. The results indicate a strong positive correlation of cumulative N2O with nitrogen (N) fertiliser rate, soil fungi community (18S rRNA gene), soil ammonium (NH4+) and nitrate (NO3); and a moderate negative correlation with amoA genes of ammonia-oxidising archaea (AOA) and soil organic matter content. The regression analysis revealed that easily routinely measured climate and management-related variables explained over 50% of the variation in cumulative N2O emissions, and that additional soil chemical and physical parameters improved the regression fit with an R2 = 0.65. Cross-wavelet analysis indicated significant correlations of N2O fluxes with rainfall and air temperature up to 64 days, associated with temporal lags of 2 to 4 days in some experiments, and presenting a good environmental control over fluxes in general. The nitrogen fertiliser mean emission factors ranged from 0.03 to 1.17% of N applied, with urea and ammonium nitrate plus vinasse producing high emissions, while ammonium sulphate, ammonium nitrate without vinasse, calcium nitrate, and mitigation alternatives (nitrification inhibitors and timing of vinasse application) producing low N2O-EFs. Measurements from multiple sites spanning several cropping seasons were useful for exploring the influence of environmental and management-related variables on soil N2O emissions in sugarcane production, providing support for global warming mitigation strategies, nitrogen management policies, and increased agricultural input efficiency.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Biotechnology and Biological Sciences Research Council

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Springer Science and Business Media LLC

Subject

Soil Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3