The Effects of Long-term Molybdenum Exposure in Drinking Water on Molybdenum Metabolism and Production Performance of Beef Cattle Consuming a High Forage Diet

Author:

Thorndyke M. P.,Guimaraes O.,Medrado M.,Loh H. Y.,Tangredi B. V.,Reyes A.,Barrington R. K.,Schmidt K.,Tillquist N. M.,Li L.,Ippolito J. A.,Zervoudakis J. T.,Wagner J. J.,Engle T. E.

Abstract

AbstractFifty-four multiparous beef cows with calves were used to evaluate the effects of Mo source (feed or water) on reproduction, mineral status, and performance over two cow-calf production cycles (553 days). Cows were stratified by age, body weight, liver Cu, and Mo status and were then randomly assigned to one of six treatment groups. Treatments were (1) negative control (NC; basal diet with no supplemental Mo or Cu), (2) positive control (NC + Cu; 3 mg of supplemental Cu/kg DM), (3) NC + 500 µg Mo/L from Na2MoO4·2H2O supplied in drinking water, (4) NC + 1000 µg Mo/L of Na2MoO4·2H2O supplied in drinking water, (5) NC + Mo 1000-water + 3 mg of supplemental Cu/kg DM, and (6) NC + 3.0 mg of supplemental Mo/kg diet DM from Na2MoO4·2H2O. Animals were allowed ad libitum access to both harvested grass hay (DM basis: 6.6% crude protein; 0.15% S, 6.7 mg Cu/kg, 2.4 mg Mo/kg) and water throughout the experiment. Calves were weaned at approximately 6 months of age each year. Dietary Cu concentration below 10.0 mg Cu/kg DM total diet reduced liver and plasma Cu concentrations to values indicative of a marginal Cu deficiency in beef cows. However, no production parameters measured in this experiment were affected by treatment. Results suggest that Mo supplemented in water or feed at the concentrations used in this experiment had minimal impact on Cu status and overall performance.

Funder

Colorado State University Agriculture Experiment Station

Climax Molybdenum Company, Empire, CO.

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry (medical),Inorganic Chemistry,Clinical Biochemistry,General Medicine,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3