Trace Mineral Source Influences Trace Mineral Solubility in Water and Mineral Binding Strength to Ruminal Digesta

Author:

Loh Huey YiORCID,Spears Jerry W.ORCID,Guimaraes OctavioORCID,Miller Alexandra C.,Thorndyke Meghan P.ORCID,Thomas Tyler A.ORCID,Engle Terry E.ORCID

Abstract

AbstractTwo experiments were conducted to examine the impact of trace mineral (TM) source on in vitro and in vivo solubility characteristics. Experiment 1: Hydroxy TM (HTM) and sulfate TM (STM) sources of Cu, Mn, and Zn were incubated separately in water for 24 h. Immediately after mixing, initial pH of each solution was greater (P < 0.03) for HTM compared to STM for all elements. Final pH tended to be greater for Cu (P = 0.09) and Zn (P = 0.07) from HTM compared to STM. Water solubility of Cu, Mn, and Zn from STM was greater (P < 0.01) than HTM sources. Experiment 2: Eight steers fitted with rumen cannula were blocked by body weight and randomly assigned to treatments. Treatments consisted of 10 mg Cu, 40 mg Mn, and 60 mg Zn/kg DM from either STM or HTM sources. Steers were individually fed a cracked corn-corn silage-based diet. Treatments were top-dressed daily. Rumen contents were collected at 0, 2, and 4 h post-feeding on d 1 and 14. On d 15, strained ruminal fluid and particle-associated microorganisms were obtained. Zinc was more tightly bound (P = 0.01) to the digesta in HTM-supplemented steers compared to STM on d 14. These data indicate that TM source influences pH and solubility of Cu, Mn, and Zn in water and may affect rumen soluble Cu concentrations and binding strength of Zn to solid digesta.

Funder

Colorado State University Agricultural Experiment Station

Selko USA, Indianapolis, IN

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3