Dating of polyhalite: a difficult 40Ar/39Ar dating tool of diagenetic to very low-grade metamorphic processes

Author:

Leitner C.ORCID,Neubauer F.,Genser J.,Bernroider M.

Abstract

AbstractHalite already deforms at surface temperatures. A valuable universal dating tool to constrain the timing of sedimentary, diagenetic, or deformational structures is still missing. The evaporite mineral polyhalite can be dated by the40Ar/39Ar method. On the example of the extremely deformed halite deposits of the Eastern Alps, polyhalite was tested to date early diagenetic stages of the deposits. The sedimentological investigation of the present study indicates that some of the macrostructures of polyhalite had a syn-depositional origin during the late Permian. It is supposed that polyhalite originated during reflux of brines. All samples selected for age dating represent characteristic microfabric types of euhedral to subhedral polyhalite crystals. Intact macro- and non-recrystallized looking microstructures of polyhalite can be expected to give plateau ages. However, nearly all measurements produced overdispersed data that do not define an age. The oldest age steps thus represent only minimum ages. A closer look revealed grain boundary migration, subgrain rotation recrystallization, twinning, and fluid-supported grain size increase. These recovery processes obscured the original ages and/or reflect the origin of new polyhalite in place of the original individuals. Based on these microstructures, the age data are supposed to reflect the circulation of aqueous fluids. Just extremely careful separation of individual crystals or in situ age dating under the microscope will be successful in dating polyhalite. Nevertheless, polyhalite can potentially serve to date deformational events of halite deposits due to its easy recrystallization property.

Funder

Austrian Science Fund

Paris Lodron University of Salzburg

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3