The Toarcian Posidonia Shale at Salem (North Alpine Foreland Basin; South Germany): hydrocarbon potential and paleogeography

Author:

Ajuaba StephenORCID,Sachsenhofer Reinhard F.ORCID,Galasso FrancescaORCID,Garlichs Thorsten U.,Gross DorisORCID,Schneebeli-Hermann ElkeORCID,Misch DavidORCID,Oriabure Jonathan E.

Abstract

AbstractThe Posidonia Shale in the basement of the North Alpine Foreland Basin of southwestern Germany represents an important archive for environmental changes during the Toarcian oceanic anoxic event and the associated carbon isotope excursion (T-CIE). It is also an important hydrocarbon source rock. In the Salem borehole, the Posidonia Shale is ~ 10 m thick. The lower 7.5 m (1763.5–1756.0 m) of the Posidonian Shale and the uppermost part of the underlying Amaltheenton Formation were cored and studied using a total of 62 samples. Rock–Eval, palynological, maceral, biomarker and carbon isotope data were collected to assess variations in environmental conditions and to quantify the source rock potential. In contrast to most other Toarcian sections in southwest Germany, TOC contents are high in sediments deposited during the T-CIE, but reach a peak in post-CIE sediments. Biomarker ratios suggest that this reflects strong oxygen-depletion during the T-CIE (elegantulum to lower elegans subzones), but also during the falciferum Subzone, which is also reflected by a prolonged dinoflagellate cyst blackout. While sediments of the tenuicostatum Zone to the elegans Subzone are thinner than in neighbouring sections (e.g., Dotternhausen), sediments of the falciferum Subzone are unusually thick, suggesting that increased subsidence might have contributed to anoxia. The T-CIE interval is very thin (0.75 m). δ13C values of n-alkanes show that the maximum negative isotope shift predates the strongest basin restriction during the T-CIE and that the carbon isotope shift is recorded earlier for aquatic than for terrigenous organisms. In Salem, the Posidonia Shale is thermally mature and highly oil-prone. The residual source petroleum potential is about 0.8 tHC/m2. Graphical Abstract

Funder

Wintershall Dea

Montanuniversität Leoben

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3