A Comparative Study of Stand-alone and Cloud-Based Fuzzy Logic Systems for Human Fall Detection

Author:

Pandya BhaveshORCID,Pourabdollah Amir,Lotfi Ahmad

Abstract

AbstractTraditionally, fuzzy logic systems are linked to specific hardware or software systems. Observations reveal that dispersed and distributed designs of intelligent systems are gaining attraction. Due to the possible complexities of fuzzy logic computations, distributed architectures have the potential to add value to the development of fuzzy systems. However, the absence of best practices and standard methodologies may prevent widespread adoption. By broadening the IEEE-1855 (2016) standard in terms of system definition and data exchange, this research offers a standard solution for building a Service-Oriented Architecture (SOA) as a novel method of implementing fuzzy logic systems by means of a cloud-based collecting, processing, and examining data over the web. A comparison between the performances of a stand-alone hardware-dependent solution and a cloud-based solution (known as fuzzy-as-a-service) is performed. The analysis is also carried out on two different cloud service providers and software libraries (Amazon Web Services using JFML as a java-based library and Azure Web Services using Simpful as a python-based library). The analysis and evaluation are performed on a human fall detection scenario involving wearable sensors. The proposed algorithm can identify between fall and non-fall events. However, the results show that the processing time taken per 10,000 samples using smartwatch and mobile was 2220 s and 101 s for a cloud-based non-fuzzy machine learning system, 1111 s and 45 s for a cloud-based fuzzy system with AWS and JFML, and 1250 s and 97 s for a cloud-based fuzzy system with Microsoft Azure and Simpful libraries. It has been observed that a smartwatch with a fuzzy stand-alone crashed after processing 5000 samples and a mobile phone requires 179.42 s to process 10,000 samples.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computational Theory and Mathematics,Theoretical Computer Science,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3