Improved spectral dynamic features extracted from audio data for classification of marine vessels

Author:

de Brito Santos Murillo,de Moraes Calazan Rogério

Abstract

AbstractUnderwater sound classification presents a unique challenge due to the complex propagation characteristics of sound in water, including absorption, scattering, and refraction. These complexities can distort and alter spectral features, hindering the effectiveness of traditional feature extraction methods for vessel classification. To address this challenge, this study proposes a novel feature extraction method that combines Mel-frequency cepstral coefficients (MFCCs) with a spectral dynamic feature (SDF) vector. MFCCs capture the spectral content of the audio signal, whereas SDF provides information on the temporal dynamics of spectral features. This combined approach aims to achieve a more comprehensive representation of underwater vessel sounds, potentially leading to improved classification accuracy. Validation with real-world underwater audio recordings demonstrated the effectiveness of the proposed method. Results indicated an improvement of up to 94.68% in classification accuracy when combining SDF with several classical extractors evaluated. This finding highlights the potential of SDF in overcoming the challenges associated with underwater sound classification.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3