Proximal gradient methods with inexact oracle of degree q for composite optimization

Author:

Nabou Yassine,Glineur François,Necoara Ion

Abstract

AbstractWe introduce the concept of inexact first-order oracle of degree q for a possibly nonconvex and nonsmooth function, which naturally appears in the context of approximate gradient, weak level of smoothness and other situations. Our definition is less conservative than those found in the existing literature, and it can be viewed as an interpolation between fully exact and the existing inexact first-order oracle definitions. We analyze the convergence behavior of a (fast) inexact proximal gradient method using such an oracle for solving (non)convex composite minimization problems. We derive complexity estimates and study the dependence between the accuracy of the oracle and the desired accuracy of the gradient or of the objective function. Our results show that better rates can be obtained both theoretically and in numerical simulations when q is large.

Funder

H2020 Marie Skłodowska-Curie Actions

Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii

Publisher

Springer Science and Business Media LLC

Reference20 articles.

1. Agafonov, A., Kamzolov, D., Dvurechensky, P., Gasnikov, A., Takac, M.: Inexact tensor methods and their application to stochastic convex optimization. Optim. Methods Softw. (2017). https://doi.org/10.1080/10556788.2023.2261604

2. Beck, A.: First-Order Methods in Optimization. vol. 25, SIAM, (2017)

3. Bogolubsky, L., Gusev, G., Raigorodskii, A., Tikhonov, A., Zhukovskii, M., Dvurechensky, P., Gasnikov, A., Nesterov, Y.: Learning supervised PageRank with gradient-based and gradient-free optimization methods. In 30th Conference on Neural Information Processing Systems, (2016)

4. Bottou, L. Large-scale machine learning with stochastic gradient descent. In 19th International Conference on Computational Statistics, (2010)

5. Cohen, M.B., Diakonikolas, J., Orecchia, L.: On acceleration with noise-corrupted gradients. In International Conference on Machine Learning, (2018)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3