Abstract
AbstractEpigenetic modifications play a significant role in the host's immune response to viral infection. Two epigenetic events, DNA methylation and histone acetylation, are crucial for modifying the chromatin architecture and the location of regulatory elements such as promoters and enhancers. In this case-control study, we evaluated the expression of genes involved in epigenetic machinery (DNMT1, DNMT3A, DNMT3B, HDAC2, and HDAC3) and the degree of methylation of promoters of immune response genes (IFITM1/2/3, TLR3/4, TNF-α, NF-κB, and MYD88) as well as global methylation (LINE-1 and global 5–mC) in blood samples from 120 COVID-19 patients (30 mild, 30 moderate, 30 severe, and 30 critical) and 30 healthy subjects without COVID-19. In contrast to previous reports, DNMT3A and DNMT3B expression was found to be significantly downregulated in COVID-19 cases, whereas DNMT1, HDAC2, and HDAC3 expression did not change. DNMT1 and DNMT3A were negatively correlated with COVID-19 severity. Critically ill patients had lower HDAC3 expression levels. TLR4 and TNF-α had increased promoter methylation, whereas IFITM1/2/3, TLR3, NF-κB, MYD88, and LINE-1 did not differ between cases and controls. Methylation of the TNF-α promoter increased as disease severity increased. Significantly less methylation of the TLR3 promoter was observed in patients with a positive outcome (recovery). We also found a correlation between the expression of DNMT3B and the methylation level of the TLR4 promoter. In milder cases, the global 5–mC levels were lower than that in more severe cases. Our findings suggest the exclusion of DNMTs inhibitors previously recommended for COVID-19 treatment and the need for additional research in this area.
Funder
Science and technology development fund-Egypt
National Research Centre Egypt
Publisher
Springer Science and Business Media LLC
Subject
Virology,General Medicine
Reference21 articles.
1. Balada E, Ordi-Ros J, Serrano-Acedo S, Martinez-Lostao L, Rosa-Leyva M, Vilardell-Tarres M (2008) Transcript levels of DNA methyltransferases DNMT1, DNMT3A and DNMT3B in CD4+ T cells from patients with systemic lupus erythematosus. Immunology 124:339–347
2. Balnis J, Madrid A, Hogan KJ, Drake LA, Chieng HC, Tiwari A, Vincent CE, Chopra A, Vincent PA, Robek MD, Singer HA, Alisch RS, Jaitovich A (2021) Blood DNA methylation and COVID-19 outcomes. Clin Epigenetics 13:118
3. Chlamydas S, Papavassiliou AG, Piperi C (2021) Epigenetic mechanisms regulating COVID-19 infection. Epigenetics 16:263–270
4. Jit BP, Qazi S, Arya R, Srivastava A, Gupta N, Sharma A (2021) An immune epigenetic insight to COVID-19 infection. Epigenomics 13:465–480
5. Karki R, Sharma BR, Tuladhar S, Williams EP, Zalduondo L, Samir P, Zheng M, Sundaram B, Banoth B, Malireddi RKS, Schreiner P, Neale G, Vogel P, Webby R, Jonsson CB, Kanneganti TD (2021) Synergism of TNF-α lpha and IFN-gamma triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes. Cell 184(149–168):e117
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献