Foresight plus: serverless spatio-temporal traffic forecasting

Author:

Oakley Joe,Conlan Chris,Demirci Gunduz Vehbi,Sfyridis Alexandros,Ferhatosmanoglu Hakan

Abstract

AbstractBuilding a real-time spatio-temporal forecasting system is a challenging problem with many practical applications such as traffic and road network management. Most forecasting research focuses on achieving (often marginal) improvements in evaluation metrics such as MAE/MAPE on static benchmark datasets, with less attention paid to building practical pipelines which achieve timely and accurate forecasts when the network is under heavy load. Transport authorities also need to leverage dynamic data sources such as roadworks and vehicle-level flow data, while also supporting ad-hoc inference workloads at low cost. Our cloud-based forecasting solution Foresight, developed in collaboration with Transport for the West Midlands (TfWM), is able to ingest, aggregate and process streamed traffic data, enhanced with dynamic vehicle-level flow and urban event information, to produce regularly scheduled forecasts with high accuracy. In this work, we extend Foresight with several novel enhancements, into a new system which we term Foresight Plus. New features include an efficient method for extending the forecasting scale, enabling predictions further into the future. We also augment the inference architecture with a new, fully serverless design which offers a more cost-effective solution and which seamlessly handles sporadic inference workloads over multiple forecasting scales. We observe that Graph Neural Network (GNN) forecasting models are robust to extensions of the forecasting scale, achieving consistent performance up to 48 hours ahead. This is in contrast to the 1 hour forecasting periods popularly considered in this context. Further, our serverless inference solution is shown to be more cost-effective than provisioned alternatives in corresponding use-cases. We identify the optimal memory configuration of serverless resources to achieve an attractive cost-to-performance ratio.

Funder

Feuer International Scholarship in Artificial Intelligence

UK Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3