Design and simulation of type-I graphene/Si quantum dot superlattice for intermediate-band solar cell applications

Author:

Sarkhoush Masumeh,Rasooli Saghai Hassan,Soofi Hadi

Abstract

AbstractRecent experiments suggest graphene-based materials as candidates for use in future electronic and optoelectronic devices. In this study, we propose a new multilayer quantum dot (QD) superlattice (SL) structure with graphene as the core and silicon (Si) as the shell of QD. The Slater–Koster tight-binding method based on Bloch theory is exploited to investigate the band structure and energy states of the graphene/Si QD. Results reveal that the graphene/Si QD is a type-I QD and the ground state is 0.6 eV above the valance band. The results also suggest that the graphene/Si QD can be potentially used to create a sub-bandgap in all Si-based intermediate-band solar cells (IBSC). The energy level hybridization in a SL of graphene/Si QDs is investigated and it is observed that the mini-band formation is under the influence of inter-dot spacing among QDs. To evaluate the impact of the graphene/Si QD SL on the performance of Si-based solar cells, we design an IBSC based on the graphene/Si QD (QDIBSC) and calculate its short-circuit current density (Jsc) and carrier generation rate (G) using the 2D finite difference time domain (FDTD) method. In comparison with the standard Si-based solar cell which records Jsc = 16.9067 mA/cm2 and G = 1.48943 × 1028 m−3⋅s−1, the graphene/Si QD IBSC with 2 layers of QDs presents Jsc = 36.4193 mA/cm2 and G = 7.94192 × 1028 m−3⋅s−1, offering considerable improvement. Finally, the effects of the number of QD layers (L) and the height of QD (H) on the performance of the graphene/Si QD IBSC are discussed. Graphical abstract

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3