Performance evaluation of polymer-filled metal fused filament fabrication tooling for profile extrusion

Author:

Kain Martin,Parenti Paolo,Annoni Massimiliano,Calaon Matteo,Pedersen David Bue,Tosello GuidoORCID

Abstract

AbstractThe application of additive manufacturing (AM) for tooling in the mould and die industry brings a disruptive potential in process performance, design flexibility and product enhancements. Maturing of existing AM technologies and emerging technologies such as metal-fused filament fabrication (metal FFF) can further support the applicability of AM tooling in polymer profile extrusion. This study provides a complete characterization of metal FFF 17–4 PH stainless-steel die inserts and evaluates their applicability in a polymer extrusion process chain. The presented experimental assessment pivots on the metrological characterization of the produced inserts and the impact of the insert characteristics on the final extrudates’ product. Considering a conventionally manufactured benchmark insert, produced via subtractive methods (CNC machining and electrical discharge machining), comparable results for AM tools in terms of extrudates’ quality and process repeatability are presented. It was found that despite significant higher average surface parameters for AM insert tools (Sa = 2–9 µm vs. Sa = 0.3–0.9 µm for dies manufactured by machining), a much smaller difference was observed in the resulting quality of polymer extrudates’ product. The roughness generation effect of polymer profile extrusion based on the different dies’ internal surface roughness topography and the effect on extrudates product was evaluated. Three-dimensional average roughness Sa on acrylonitrile butadiene styrene extrudate surfaces obtained from conventionally machined dies was in the range of 0.3 µm. For extrudates obtained from additively manufactured dies, their Sa was in the rage of 0.5 µm (despite the much higher surface roughness of FFF dies compared to machined dies). The results confirm that with suitable extrudates’ product requirement, it is feasible to apply metal FFF as the selected manufacturing method for tooling in polymer profile extrusion.

Funder

Marie og M.B. Richters Fond

Ministero dell’Istruzione, dell’Università e della Ricerca

Technical University of Denmark

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3