Experimental investigation and optimisation of the micro milling process of hardened hot-work tool steel

Author:

Balázs B. Z.ORCID,Takács M.ORCID

Abstract

AbstractIn the past few decades, demand for precise miniature components has grown significantly. Modern production technologies required for the production of such components, including micro milling, have become extensively researched areas. In spite of the intensive research in this field, there are still many topics and aspects that merit investigation. Through a systematic series of experiments, this paper analyses the special characteristics of micro milling including cutting forces, vibrations, burr formation, and surface quality. A 5-axis micromachining centre with 60.000 rpm maximum spindle speed was used for the experiments carried out in the scope of this paper, and the machining of hardened hot-work tool steel (AISI H13) with a hardness of 50 HRC was investigated in detail. Also, a special measurement environment was prepared in order to collect machining data. Based on the results of the experiments, a power regression prediction model for cutting forces was created. As part of the analysis in the scope of the experiments, fast Fourier transformation was carried out in order to analyse the dynamic characteristics of the micro milling process, and to determine dominant frequencies. In addition, an analysis of variance (ANOVA) was applied to extensively analyse the main effects and interactions of different cutting parameters on different characteristics. Based on the investigations carried out in a comprehensive parameter range, an optimal parameter combination was also determined. The results of the experiments introduced in this paper contribute to a deeper understanding of the micro milling process, and this research provides information directly applicable in the industry.

Funder

Budapest University of Technology and Economics

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3