Effect of oxygen in shielding gas on weldability in plasma-GMA hybrid welding process of high-tensile strength steel

Author:

Trinh Quang Ngoc,Tashiro ShinichiORCID,Suga Tetsuo,Yamaoka Hiroto,Inose Kotaro,Watanabe Kosuke,Hyoma Kengo,Tanabe Yoshihiro,Bui Van Hanh,Tanaka Manabu

Abstract

AbstractThis study aims to clarify the effect of oxygen in shielding gas on weldability in the plasma-GMA (Gas Metal Arc) hybrid welding process of high-tensile strength steel plates. The difference in keyhole profile and bead formation, when the GMA shielding gas was pure Ar, Ar + 2% O2, or Ar + 20% CO2, was investigated for plate thicknesses of 6 and 9 mm for the first time. It was found that the weld beads were in good condition for 6 mm thickness plates for all shielding gases, which implied that the window of welding conditions for this thickness is wide. In contrast, for 9 mm thickness plates, a fully penetrated weld bead was achieved only in Ar + 20% CO2, and weld bead penetration in Ar + 20% CO2 is higher than in pure Ar and Ar + 2% O2 in the same welding condition. Due to decreased surface tension caused by sufficiently increased oxygen absorbed into the weld pool, the keyhole diameter increased to penetrate the bottom side of the plate, and the depressing weld pool surface under GMA allowed the heat input from the GMA to be directly applied to a deeper position. Consequently, the plasma-GMA hybrid welding process with Ar + 20% CO2 achieved a complete penetration for a plate of 9 mm thickness, owing to the effects of both phenomena. It proved a potential to increase penetrability in welding thicker plates by controlling oxygen content in shielding gas of GMA adequately.

Funder

JSPS KAKENHI

the Project on Design & Engineering by Joint Inverse Innovation for Materials Architecture (DEJI2MA) from the Ministry of Education, Culture, Sports, Science and Technology

an OU Master Plan Implementation Project promoted under Osaka University

Osaka University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3