Optimization of critical process control parameters in MEX additive manufacturing of high-performance polyethylenimine: energy expenditure, mechanical expectations, and productivity aspects

Author:

Vidakis NectariosORCID,Petousis Markos,Spiridaki Mariza,Mountakis Nikolaos,Moutsopoulou Amalia,Kymakis Emmanuel

Abstract

AbstractThe demand for 3D-printed high-performance polymers (HPPs) is on the rise across sectors such as the defense, aerospace, and automotive industries. Polyethyleneimine (PEI) exhibits exceptional mechanical performance, thermal stability, and wear resistance. Herein, six generic and device-independent control parameters, that is, the infill percentage, deposition angle, layer height, travel speed, nozzle temperature, and bed temperature, were quantitatively evaluated for their impact on multiple response metrics related to energy consumption and mechanical strength. The balance between energy consumption and mechanical strength was investigated for the first time, contributing to the sustainability of the PEI material in 3D printing. This is critical considering that HPPs require high temperatures to be built using the 3D printing method. PEI filaments were fabricated and utilized in material extrusion 3D printing of 125 specimens for 25 different experimental runs (five replicates per run). The divergent impacts of the control parameters on the response metrics throughout the experimental course have been reported. The real weight of the samples varies from 1.06 to 1.82 g (71%), the real printing time from 214 to 2841 s (~ 1300%), the ultimate tensile strength from 15.17 up to 80.73 MPa (530%), and the consumed energy from 0.094 to 1.44 MJ (1500%). The regression and reduced quadratic equations were validated through confirmation runs (10 additional specimens). These outcomes have excessive engineering and industrial merit in determining the optimum control parameters, ensuring the sustainability of the process, and the desired functionality of the products. Graphical Abstract

Funder

Hellenic Mediterranean University

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3